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Stochastic geometry of polygonal networks: An alternative approach
to the hexagon-square transition in Beard convection

Uwe Thiele
Institute for Material Science, Dresden University of Technology, 01062 Dresden, Germany

Kerstin Eckert
Center for Physical Fluid Dynamics, Dresden University of Technology, 01062 Dresden, Germany
(Received 5 May 1997; revised manuscript received 3 June)1998

We apply stochastic geometry to the transition from hexagonal to square cells recently observed in surface-
tension-driven Beard convection. In particular we study the metric and topological evolution ofiBe
patterns as a function of the temperature differercE, across the layer. The preference of squaredBe
cells at higherAT is a consequence of both a higher efficiency in heat transfer and more favorable metric
properties. Most notably, the perimeter-area ratio of a square cell exceeds that of a hexagonal cell by an
unexpectedly high value. From a topological point of view, theddd pattern obeys the Aboav-Weaire law at
all times, even in the presence of threefold and fourfold vertices. The regimes above and below the transition
are characterized by different topological correlations between neighboring cells. With the appearance of
fourfold vertices, the topological correlation changes from negative to podifi€63-651X%98)14709-§

PACS numbe(s): 47.20.Dr, 47.54t+r, 02.50—r, 64.60.Cn

[. INTRODUCTION ous studies elucidated the control parameter dependence of
the metric and topological properties of the rized cells.
Three-dimensional cellular structures based on twodnstead most quantified the wave number or the disorder.
dimensional polygonal patterns are widespread in nature. I8ince the hexagon-square-transition resembles an order-
biology, they appear, e.g., in corn cobs and epidermal tissua@lisorder transition, we next review three existing approaches
Many metallic materials are polycrystalline. Etching theirto quantify disorder.
surfaces reveals the polygonal arrangement of the small The first approach26,27,23 that introduces different
single crystals. In hydrodynamics polygonal structures ariseneasures of disorder such as the radial and orientational cor-
e.g., from surface-tension-driven Ba&rd convection and relation functions and special disorder functions, accounts
Rayleigh-B@ard convection in non-Boussinesq fluids. for displacements and distortions of cells caused by defects
To analyze such patterns we employ the stochastic geonin a hexagonal pattern. Since disorder is always measured
etry of polygonal network{SGPN. Historically, the first  with respect to an ideal hexagonal pattern, an adequate de-
polygonal structures investigated by SGPN were biologicakcription of the transition between convective states of dif-
tissues[1-6]. Later research focused on clusters of metalferent symmetry occurring at higher super-criticality is not
grains, soap froth, and the similarity between their structurepossible.
and evolution[7—14]. For a detailed review of stochastic = The second method calculates the minimal spanning tree
networks in different physical systems we refel i®]. of the pattern, which is the shortest possible graph that con-
While the application of SGPN to soap froth and poly- nects all centers of mass of the convection cells. The branch
crystals has been fruitful, we are aware of only one applicalength histogram is unique for the arrangement of cell cen-
tion to polygonal convective patterfd6]. However, these ters. The evolution of convection networks is characterized
methods are particularly suited to geometrical studies of thén terms of the normalized average branch length and the
evolution of surface-tension-driven "Bard (STDBCO) or  standard deviation of the branch length distribufiag]. The
Benard-Marangoni convection. information contained in both quantities is very restricted
In the last decade STDBC has received considerable agnd does not elucidate the topological structure of the net-
tention. Since the first experiments of iBed[17] STDBC  work. Large cells are underrepresented because the minimal
has been associated with hexagonal patterns. While impospanning tree prefers to use small cells for its main branches.
tant features of the moderately nonlinear regime, like the The third approach describes convection cells by means
onset of convectiofl18,19, wave number selectioi20,21],  of the crystallography in cylindrical symmet{29,30. The
and evolution of disordef22] are well understood, the be- main assumptions are weak disorder and the occurrence of
havior in the strongly nonlinear regime of STDBC has onlythreefold vertices only. This approach cannot handle patterns
recently received a comprehensive analysis. Referdi@8s  characterized by vertices with coordination number four as
25] showed that beyond a certain distance above the thresfer square Beard cells.
old of the primary instability, square convection cells rather To summarize, the three approaches apply to the weakly
than the seemingly ubiquitous hexagons are persistent ambnlinear evolution of the hexagonal pattern, but not to the
dominant. transition between patterns of different symmetry. This gap
We reexamine the transition from hexagonal to squarean be bridged by SGPN. Furthermore, SGPN allows the
Benard cells by means of SGPN, because none of the prevecomparison between polygonal patterns in hydrodynamics
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TABLE |. Metric and topological quantities used for the char- and the second moment,
acterization of cellular networks.

N
1

Quantity Symbol Type M;:NEl (fi_<f>)2-

=
Cell area a metric ) )
Cell perimeter - metric f; is the value of for cell numberi. We call the mean values
Side length | metric and the intensive quantities the first order characteristics of

: : the network. Normalized second moments are divided by the

CZﬁfxbceot\c/)er?:a?i/Z)cr)\ ?Srisber C: topr)gtlect)rg;?cal square of the mean VaMé)Z' '
Side number N topological The distributions of the quantities in Table | and the den-

sities in Table 1l depend on each other but only a few depen-
dencies are known. Exact relations for the mean values and
and other networks such as, e.g., soap froths, epidermal tighe densities exist in the limit of infinite networks only. The
sue, or honeycombs. These patterns have a vertex coordin@ost important aréfor details and proofs s€@3] and ref-

tion number of three. As long as STDBC occurs in hexago-€rences therejn

nal cells with single defects the Bard pattern fulfills the

general topological relations derived for networks with three- (a)= () _1 1)

fold vertices[16]. We ask here whether these relations apply &= 2k s’
also to STDBC patterns with appearance of square cells, i.e.,
fourfold vertices. 2k
The mathematics of stochastic two-dimensional networks v= m @

is introduced in Sec. Il A. Next we discuss STDBC including
the recently observed hexagon-square transition. In Sec. liwhich relate the average number of sid@s),, and the den-
we apply SGPN to the metric and topological changes osity of sides,k, to the average cell areda) (i.e., to the
Benard cells during this transition. We calculate the topo-density of cellss) [Eq. (1)], and the density of vertices, to
logical correlations between neighboring réed cells and the density of sidesk, and the average vertex coordination
discuss their differences from those of other naturally occurnumber,(v) [Eq. (2)]. Together with Euler’s relation,
ring networks(Sec. Il . We find both positive and nega-
tive correlations between the topologies of neighboring cells. v—k+s=0, ()
Finite size effects are estimated in Sec. Il D.

they lead to

IIl. METHODS 1 1 1

A. Mathematical tools for two-dimensional patterns (v) + (n) — 2 )

A cellular pattern is a dense, space-filling arrangement of . h . v six f ks with
n-sided polygons. The number of sides,of the individual ~Eduation(4) states thagn) is exactly six for networks wit

polygons varies. To analyze such cellular patterns we us chL!siver threefold ve'rtices and Igss'than six for networks
stochastic geometr}31—33, based on the statistical distri- that include vertices with a goordlnatlon of four or more.
butions of the network-variables both metric and topologicaPeteen the average cell perimeter) and the average side
(Table ). Imagine a cellular pattern artificially deformed by '€ngth(l) we have the relation

applying a force at one side. The metrics of the pattern (my=(1)(n) 5)
change while the values of the topological quantities remain ’

the same. General relations exist between the mean values pfyationg1)—(5) reduce all first order information on the set
the corresponding distributions of the network-variables ang gensities and mean values to a triplet, containing one of
the intensive quantities of the network. The intensive quange densities, one mean value of a topological variabig (

tities (Table I) arev, k, ands, the densities of vertices, cell or (1)), and a metric variable characterizing the boundary of
sides, and cells, respectively. The most important parametetge cells (1) or ().

of the distributionsf are the mean value, A complete characterization of the structure also requires
1 N higher moments of the distributions, whose relations are not
f)= —2 3 known. We use the second moment of the distribution of the
(Hh=52 fis use 1 _ _
i=1 number of sideg:,, abbreviatedu,, as a measure of disor-

der of the networK15].

Correlations among metric and topological quantities can
also be considered, e.g., the Aboav-Weaire law for the purely
topological correlation between the number of sides of
neighboring cells. The relation was introduced for infinite

TABLE IlI. Intensive network quantitiesN,, N, andN, are
the numbers of vertices, cell sides, and cells, respectively Aaisd
the area filled by the network.

Density Symbol Formula ; St

networks with vertex coordination threén)=6) and ex-
Density of vertices v N, /A tended to(n)# 6 to account for finite size effec{84—37.
Density of sides k Ng /A This law linearly relatesn(n)n andn:
Density of cells S N /A

m(n)n=({n)—ay) n+{n)ay+ u,. (6)
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FIG. 1. Schematic of the liquid-air Bard system: A tempera- @Z(Xk
ture differenceAT=AT,+ AT, is maintained across the two lay-
ers by isothermal plates. The flow is mainly driven by the tempera-

ture dependence of surface tension. The thicknesses of the liquid F1G. 2. Schematic section through the experimental apparatus.
and air layer arel; anddg, respectively.

=09—Y(T-T
m(n) stands for the average number of sides of all neighbor- 7=00= o), ®

ing cells to a cell witn sides averaged over aiisided cells. - .

aw is an empirically determined parameter that quantifies thgvhere the temperature coeff|'C|e.nt of the surface tension

deviation of the slope from the average number of sides. —do/dT IS positive for the liquids we used. If a tempera-
Equation(6) holds for disordered patterns like biological '€ fluctuation generates a hot spot at the free surface, the

cells and soap froth. In these caseg is about 1.2, calcu- surface tension decreases according to (By.As a result,

lated from the data with a weighted least-squares fit. Théiq“ic.j is pulleq radially outward to regions Qf.higher surface
weights are chosen to be the probabilitigs to find cells tension, causing further up-flow in the vicinity of the spot.

with n sides.ay, is then given by[34,35 For sufficit_antAT the rising_ hot quuic_i reinf_orces _t_he tem-
perature disturbance, causing the primary instability.
aw=[(n}(nm(n))+ u,—(n’m(n))]/ 5. (7
2. Setup and parameters

Equation(6) also naturally extends the Aboav-Weaire law to  Figure 2 shows the apparatus. The container bottom is a
networks with nonthreefold vertices. polished silicon crystal wafer, 12.5cm in diameter, on a

Phenomenologically the Aboav-Weaire law says that, in5 cm thick copper block with a diameter of 17.5cm. An
the usual cas¢n)—ay~5, on the average one finds cells aluminum disk of the same diameter containing 4.0 m of a
with few sides beside cells with many sides and vice versathermo-coax cabléPhilips) is pressed from below against

The dependencies of the average cell area and perimetgtie copper block. To minimize lateral heat losses the copper
on the number of sidesare linear for the area for biological block is placed in a vacuum, and, the outer parts of the
cells (Lewis’ law) and for the perimeter for polycrystals chamber are thermally insulated. The liquid layer is confined
(Feltham’s law. Linearity is not clear for soap froth by an inner plexiglass ring of radius=45.2 mm. A menis-
[15,14,37. Neither relation holds for Beard cells(Sec. cus at the inner ring is avoided by filling it to its total height.
1B 2). The space between this ring and a second ring of larger di-

ameter is filled with the same liquid to minimize lateral tem-
B. The experiment perature gradients. We use a 10 cS siliconéM 10, Huls

AG) with a Prandtl number Rr100 atT=25 °C. Its prop-
erties are summarized in Table IlI.

The experiment consists of a liquid layer heated from be- The liquid thicknesgl, is 1.41 mm for an aspect ratio
low by a horizontal plate of uniform temperatuie. Fig. 1). =2r/d;=64. The liquid layer is closed from above by a
The free surface of the liquid is in contact with air, cooled bytransparent sapphire disk, 12.0 cm in diameter with a thick-
the upper isothermal plate. The quiescent basic state of theessd,=2.99 mm, placed on a third, outer ring. The air
liguid-air layers loses its stability to hexagonal cell convec-layer, formed by the difference in height between inner and
tion once the temperature differencel, between the lower outer ring, has a thicknesk=0.26 mm.
plate and interface exceeds a critical valAd,;. In liquid A special cooling devic¢38] supplies water with a flow
layers with thickness of the order of 1 mm or less, surfaceate of 95 I/h at 18.660.01 °C to the center of the sapphire
tension dominates buoyancy. Thus, the essential ingredienlisk where it flows radially outwards, ensuring axisymmetric
for STDBC is the variation of surface tensienwith tem-  cooling. The temperatures of the silicon crysial, and of
peratureT, approximately, the sapphire windowT,,, are measured with encapsulated

1. A brief introduction

TABLE IIl. Properties of the silicone oil NM 1@Huls AG) at 25°C.v, p, , A\, «, andy denote
viscosity, density, thermal diffusivity, heat conductivity, thermal expansion coefficient, and temperature
coefficient of surface tension.

v (10 % m?/s) p (kg/nT) k (1074 m?s) N (W/mK) a (K™ v (N/mK)

0.10 940.0 0.00103 0.134 0.0011 5.9°%0
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quartz crystals. They have a diameter of 1.8 mm and show a
highly linear dependence of the resonance frequency on tem-
perature. T, is controlled with a feedback loop
(£0.005 K) and increased automatically in a quasistatic
manner at a rate of 0.08 K/h. Before visualizatidp,is held
constant for one horizontal relaxation time,=r?/«, ap-
proximately 5 h.x denotes the thermal diffusivity.

The dimensionless control parameter measuring the @
distance above the threshold of primary instability, is defined
as

AT—AT,

AT, ©

whereAT.q is the temperature difference in the conductive
regime given by ©

Tb_Tw

ATed=770x, 1d)(dg/Ng+dg/Ng) "

(10

N1, Ag, and\g are the heat conductivities of liquid, air, and
sapphire, respectively. For more details we refef2s).

3. Image processing ©

We used standard shadowgraph techniques to visualize FIG. 3. Changes of the cellular pattern of STDBC with increas-

the convective patterf89], thresholded into binary pictures, ing control parametes (shadowgraph imaggfor large aspect ratio
using a QUANTIMET 570 image processing and analysis

program (Leica). Thresholding retains the light appearing (I'=64): (a) hexagonal cells{=2.2), (b) defects in the hexagonal

; . . pattern €=2.4), (c) intermediate stages=4.0), (d) square cells
cell knots(verticeg and edgegsides, which correspond to (e=6.1), and for medium aspect ratid’ €42): (e) intermediate

the down-flow of cold liquid. stage €=4.0), (f) square cells §=5.3). The parameter are Pr
The binary pictures are corrected manually before the co=100, g,=1.41 mm, dy=0.26 mm for(a)—(d) and P+=100, d,

ordinates of the vertices of every cell and pointers to all-1 .56 mm, dg=0.46 mm for(e)—(f).
neighboring cells are extracted. From this information we
calculate the metric and topological quantities only for bulk This pattern can be preserved to higlkeunder low noise
cells (180 to 250 to avoid perturbing effects introduced by conditions. Figure @) shows an example far=2.2. More
peripheral cells. The quantities include side length, numbetypical, however, is the presence of certain types of defects
of sides, cell area, cell perimeter, and angles between thir this e range[Fig. 3(b)]. These defects mainly cluster into
sides(in the following “side angle’) for all cells. To com-  penta-hepta pairs and different kinds of flower def¢d6.
pute the cell area an-sided polygon is approximated by ~ Generally, the penta-hepta defesee Sec. Il A has the
— 2 triangles. highest topological stability. Beyonel,=1.5+0.5, depend-
The digitizing routines split fourfold vertices into two ing on the layer thicknesd; , the number of pentagonal cells
closely spaced threefold vertices and a short side betwedises as a consequence of a systematic modification occurring
them. To eliminate spurious sides, vertices separated by le#s the defect structurgt1]. As a result, pentalines of growing
than a defined cutoff length are merged iteratively and interorder, i.e., increasing numbers of pentagonal cells, are
actively to preserve the topology of the network. We deterformed [Figs. 3c) and 3e)]. Above e,=4.2+0.3 square
mine the cutoff length from the side length distribution for convection cells appear. With increasiaghe squares con-
each image. The uncorrected distributions have an unphysiinuously replace the hexagons. An advanced stage of this
cal minimum at side lengths comparable to the typical diam{process is shown in Fig. (8. While at the higheste
eter of the vertices that can be identified within an error of lachieved in the experiments, a small number of hexagons
pixel. To estimate the error caused by edge eliminationpersist between the square cell domains for large aspect ra-
some patterns were corrected with the derived cutoffl  tios, a nearly pure square pattern is obtained for smaller as-
pixel. The resulting small error together with the finite reso-pect ratios[Fig. 3(€)]. The basic properties of the square
lution of the digital images gives the error bars in the plots.Benard cells have been studied [@5]: The square cells
more efficiently transport heat, whereby their wave number
IIl. RESULTS exceeds that of hexagonal cells. While the selection of hexa-
gons at the onset of convection can be intuitively understood
Before analyzing metrics and topology of the STDBC pat-on the basis of symmetry arguments, the selection of squares
tern in detail we first wish to demonstrate qualitatively theis not so obvious. In Sec. Il B 3 we demonstrate that their
changes in the cellular compositigkig. 3). Increasing the metric properties, as well as their higher transport efficiency,
control parametee in a quasistatic manner, a pattern of are another reason for the greater efficiency of square cells in
well-ordered hexagonal cells appears eat 0 [18,19,25. strongly nonlinear STDBC.



3462 UWE THIELE AND KERSTIN ECKERT PRE 58

0.5
1.0 TN
A a p
P, AAA; 50.4_
0.8 EA
0.6 AA '..:TB. 0.31
A A
0.4 hexagons a squares 0.2+
Au
0.24 s WA 0.1
A
. LRV o
0.0] vmeamwl® " ko 0.01
01 2 3 45 6 7 8 0
€
(@
3.8
6.0 o‘p'. <v>
<n> e, 3.6
5.5
S 3.4
L]
5.0 )
* 3.2
4.51 -°.o.{’.
3.01 e=4.6
4.0 ————r———+—r
01 2 3 4 5 6 7 8 0
© € E(d) FIG. 5. (a) Transformation of a penta-hepta deféeft) into the
C

5-5-6-6 cluster(right) having a fourfold vertex at the centgb)
FIG. 4. Evolution of topological quantities with control param- Transformation of a pentalinigeft) into a patch of square cells with

etere. (a) Probability of hexagonal and square ce{l, probability pentagonal edgdsight). Schematic after shadowgraph images. The

of pentagonal cellsic) average number of side@]) average coor- &TOWs in(@) and (b) indicate vanishing sides.

dination number of vertices.

crossover in the topological properties of the pattern sets in.

In the ranges;<e=<5.5, (n) changes from 5.5 to 4.5 while
The side number distribution .gives direct access to th?y) increases from 3.1 to 3.6. The final state in the experi-

fraction, p,, of polygonal cells withn sides. Thep, of the  ent ate=8.0 has square convection cells, forming do-

main cell typeshexagons, pentagons, and squaege plot-  aing of different orientation and extension. The deviation

ted in Figs. 4a) and 4b). The mean values of the distribu- of (») and (n) from four is due to a few hexagons and

tions, nametly, the ?j\_/er?ge numé)er of siderhs), aT‘dFt.he pentagons that persist with remarkable stability between the

Z{Srggg \:(%g ex coordination numbge), are shown in Figs. square domains, because of the circular geometry of the con-
With the onset of the primary instability:& 0) the liquid E;lSr}er and of the rather high Prandtl number of the liquid

layer is tessellated by well-ordered hexagonal cefis, ,U«.z measures pattern disordgt2,13, and can describe

~0.01, pg~0.98, p5s~0.01, p,=0. The average number . : ;
of sides ?g> s six g;d the av%lrage vertex coor(?ination num.-he transition between two ordered states via a disordered

ber,(»), is three. The deviation gfg from unity is due to a Ntermediate state. Unlike the defect densig6,27, w,
few pentagonal and heptagonal cells, which pair in pentaeasures dewatlon_s f_rom the average value of the entlre. pat-
hepta defects. Beyons, the number of pentagons that are tern instead of deviations from the ideal hexagonal lattice,
not bound in penta-hepta defects starts to increase, via #eating hexagonal and square cells equally. The evolution of
mechanism studied in detail [#1]. The process is initiated /2 With & is shown in Fig. 6. In the purely hexagonal regime
by a generic transformation of the penta-hepta defect occuftS value is close to zero. With the rise of the number of
ring at highere, sketched in Fig. &). During this transfor- ~Pentagons it increases to reach a maximurea#.5, then
mation a cell side between the heptagon and one of the hexfecreases to around,~0.4 at highere. The value ofu,
gons shrinks to vanishing. Consequently, two pentagons ang 0 at largee results from the persisting pentagons and
two (nonregular hexagons appear with a fourfold vertex at hexagons. Comparing the behavior of with the shape of
the center. Although thi§-5-6-6 clusteris a topologically ~ Pn, (N) and(v) in Fig. 4, we observe that the, maximum
stable defect in the larger range, it remains only an inter- occurs for the state with maximurps and separates the
mediate step towards larger compounds of pentagons, thgates dominated either by hexagons or squares. This confor-
pentalines Again, a side of one of the hexagons shrinks tomity is not trivial becauseu,=3,(n—(n))p,=ps[1
vanishing, and the prototype of the pentaline, comprising+4(P4/ps)]1—PL1+4(pa/ps)+4(pa/ps)?] (with ps=1
four pentagonal cells, appears. The vanishing of cell sides-p;—ps and(n)=X,np,=6—2p,—ps). The dependence
continues and pentalines of growing order, i.e., increasingf u, on the ratiop,/ps and therefore on the size and shape
numbers of pentagons, forpaf. Fig. 5b), left]. of the different patches requires either extremalps or

The rise inps accompanies a decrease(im) to 5.5 and pg=p, in order to find simultaneous maxima pf and ps
an increase iv) from three to 3.1. Abovesg=4.2+0.3, [42]. The state with maximaps is also the state with the
square cells appear within the pentalifieg. 5b), right]. A maximal number of different patches—the best mixed state.

A. Topological properties of Benard cells
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Furthermore, the appearance of the square cells within thi © @

pentalines suggests that the pentagons are not a by-product )

of the finite geometry but a necessary precondition for the FIG. 7. The metric properties of Bard cells as a function af.
onset of the transition. As discussed [il] the pentalines (&) Average side angl¢w), (b) average side lengifl), (c) average
introduce a significant curvature in the three elementary rolfell area(@), and(d) average cell perimetefm).

systems composing the hexagonal pattern. This curvature is a

source of the mean flow, also supporting further merging of

the cell knots. Thus, the pentagons mediate between the twigom the dotted line. Thus, in this regimés) increases
ordered states. In addition, they introduce significant disordefore rapidly than foe<e. To understand this behavior we
into the pattern, which is well characterized py. study next the behaviors of particular cell classes.

B. Metric properties of Benard cells 2. The properties of hexagonal, square,

1. The metrics of the entire Beard pattern and pentagonal Beard cells

Before we look at particular cell classes we first wish to  Unlike Fourier space analysis, SGPN allows us to obtain a
study the entire pattern as a function of According to  complete set of averaged metric quantities for all three cell
Table I, we plot in Fig. 7 the average side angle, side lengthtypes, including cell area and perimeter. Furthermore, SGPN
area, and perimeter. The side angle measures symmetgan provide all minimal spanning tree results, with the
changes. It is 120 ° in the purely hexagonal regime dor
<1 and tends to 90° beyor=5.5 where squares dominate
(actually ~97 ° because of defegts

The average side length increases slowly weithoth in 171
the hexagon-pentagon regimes@<g, and in the square-
dominated regime abowe=5.5, due to an increase of wave
number{21,20. Between these ranges, i.e., with the onset of
the hexagon-square transitiofl,) increases by 35%. This
increase is much less pronounced in the average perimeter
(7r) and not identifiable inla). The behavior of ) is a
consequence of the contrary behaviors(bf and (n) (cf.

Fig. 4), which are related tg=) via Eq. (5). Both (7) and 151
(a) have their slope witle reduced for =3 by the growing
number of pentagons.

The difference of the dependence of the integral quantities
(1), {m), and(a) on ¢ suggests that the ratio between pe- 14
rimeter{ ) and arega) affects pattern evolution. In Fig. 8
we plot () versus(a) with ¢ as a parameter. Since both
() and(a) grow monotonically withe, points located near FIG. 8. Average cell perimetdrr) vs average cell areda). s
the origin have lowers. With the onset of the hexagon- increases monotonically from left to right. The dotted line is a guide
square transition at = ¢ the points deviate more and more line. All points deviating clearly from this line have=«.

<n> [mm]

14 15 16 17 18 19
<a> [mm?]
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moment.

Comparing the values dfl,,) we find that the squaréhex-
agonal cells have the highediowes) side lengths while
pentagons are intermediate. In the transition rangese

havior. While(lg) changes in this range by about 5bs)
increases by 10%. Thus, the pentagons behave like hexag
(squarepif most cells are hexagon&square. Knowing the

behavior of(l,,) allows us to understand the evolution of the

integral quantityl) [cf. Fig. 7b)]. The drastic change start-

ing at e=¢4 is caused by the crossover from the hexago

line, (l¢), to the square lingl ), due to the stability loss of

the hexagons. It is further supported by the behavior of th

pentagons mediating between both cell classes. In Table
we compare the fit¢a,) versus(l,) with the relations ex-

pected for strictly regular cells. The deviation of the prefac-

tors from regularity is 0.4% for squares, 2.7 % for pentagon
and 1.9% for hexagons. The irregularity changes the rel
tions between side length and wave number for regular pol
gons:

41 21

k6=3T6, k4:U. (11)

erage area vs the control parameterfor the entire pattern and the

three cell types.

Another consequence of the qualitatively different behav-
ior of the(l,) (and therefore of thém,)) is that({sr,) cannot
branch length distribution and its second moment replace@epend linearly on the side number(Feltham’s law. The
by the normalized side length distribution and its secondsame argument applies for the linear dependency of the av-
erage cell arega,) on n (Lewis’ law). However, the laws
Figure 9 plots the average side length for each cell classmight hold in a subrange of the control parameter. Reference
[16] validated Lewis’ law fore=2.5. Our analysis shows
that in the weakly nonlinear range both Lewis’ and Felth-
am'’s law apply reasonably well. As for soap frdtt¥], the
<5.5, the pentagon side lengths) displays a peculiar be-  statistical error is slightly less for Feltham’s than for Lewis’

law.
ons

3. The perimeter-area-ratio criterion

Next we study thgwr)/(a) ratios both of the entire pat-
tern and of the particular cell classésg. 10. We see that
"hese guantities decrease with increagingvhich is due to a
lobal increase of the cell siz¢25]. The (w)/(a) ratio of
e entire Beard pattern moves through the space bounded

y the hexagon and the square lines. Ear2.5 where hexa-

S

gons are dominant, the ratio follows the hexagon line. In the
transition range, extending from 3@ =<#6.0 the ratio in-
treasingly deviates from the hexagon line, intersecting the

Fine of pentagons. Above=6.0 the{w)/{a) ratio follows

Yihe square line. Figure 10 suggests that the stability loss of
hexagons results to a part from an unfavorable perimeter-
area ratio in comparison to square cells. Indeed, we find that
(m4)/{a,) drastically exceeds the values expected on the ba-
sis of the following two arguments. Generally, the relation

Therefore, the translation of the wave number measured in / |
Fourier space into side length of the cells via Ef) is only M = @ (12)
approximate. (me)l () (l4)
TABLE IV. The relation between average side lendth), and average cell areg,), for the three cell
classes.
Theoretical relation for Relation as determined
Planform the regular planform from experiment

Hexagonal cell ag=3/312=2.5982

as=1\25+10y512=1.7202

as= |‘21

(ag)=2.55Q6)”
(a5)=1.6731s5)”

(a4)=0.99€(I4>2

Pentagonal cell

Square cell
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FIG. 11. Schematic of the derivation of an upper bound for the 304
side length of a square cell,, as a function of the side length of
the hexagonal cell. c

holds for regular planformgcf. Table 1V), i.e., the ratio of
the (m,)/{a,) is inversely proportional to the ratio of the
side lengths. A m,)/{(a,) larger thar mg)/(ag) requires 20-

(1)=<V3 (lg). (13

15

To estimate(l,) we consider first the real transition as
sketched schematically in Fig. 11. The largest side lergyth,
of the pentagon gives an upper bound {by) as,s=I1;* FIG. 12. The dependence of(n)n on n (Aboav-Weaire lawy.
=2l sinm/3= J3 l. From this argument we obtain The lines represent the linear relation Eﬁib with ayy calculated by
(ma)l{a,)={me)l{ag). We next consider an ideal transition a least squares fit. We show one malnl_y hexagonal netwerk (
that proceeds directly from hexagons to squares. The conser-2-4): @ nework from the transition regior £4.7) and a net-

work with mainly square cellse(=7.1).
vation of the cell area requirdg=V \/5/2\/5 lg, implying

(mayl{as))({me)/{ag)) = V2\/3~1.07. In the experi- _ dx dv=0
ment, however, we findl,)=(0.80+0.03)y3 (l¢) leading avz(x,y,z—consh X ay=5
to

requiringv, a, ~v, a_ with a=a_+a, where “+" refers
(ma)l{as) — (1.26+0.05) (14) to up flow. Sincea_<a, it follows thata,=~a. Given an
(mg)l{ag) ' T average upward velocityy, , the downward velocity is
higher for smaller areas of down flow and becomes roughly
The difference between the observéid26) and the maxi- proportional to ¢r/a) ~*. Thus, the square cells convert the
mum expected1.07) values is also qualitative. Assuming thermocapillary energy more efficiently at higher since
Eq. (11) for regular polygons, i.ek,/ke=3l4/2l,, the two the viscous dissipation associated with the vertical motion is
considerations above imply a wave number ratio between Obviously smaller.

Ky C. The relation between topological quantities
0.87<—<0.93. (15 _ . .
Ke Until now we have analyzed the metric and topological

quantities of single cells averaged over the ensemble. Next

The upper(lower) value is valid for argument ongwo). The  we focus on correlations between the topological properties
wave number of squares should be at least 7% smaller thasf neighboring cells. Especially, we check the generalized
that of hexagonal cells. The wave number ratio observed i\boav-Weaire-law[Eq. (6)], calculating the Aboav param-
the experiment, however, larger than unity by nearly 7%, eteray, from the experimental data via the weighted linear fit
in accordance with results obtained independently by Fouriem(n)n=c,n+c.. Comparing with Eq.(6) we obtainay
space analysif25]. =(n)—c,. The validity of the law in our case requireg

To see why the higher perimeter-area ratio favors square=(n)ay+ wu,, and the mean deviation is less then 2%. Thus,
cells at larger we briefly recall the main feature of strongly our data support the applicability of the Aboav-Weaire law
nonlinear STDB{43]. For increasing: the Peclet number to patterns with threefolénd fourfold vertices. This fact is
Pe rises while the Reynolds number remains below unitysurprising, since the Berd pattern differs significantly from
Due to the high Peclet number the isotherms are stronglthe usually studied random networks, with cells preferen-
deformed even at moderate The nonlinear redistribution tially clustering with cells of the same topological class. This
of the temperature gradients leads to the formation of thereircumstance distinguishes the iged pattern from stochas-
mal boundary layers of thicknessbetween adjacent cells. tical networks like soap froth.
This scale separation into a macro scalel, and a micro In Fig. 12 we show the dependence rafn)n on n for
scale,6~ (kPe) 1, expresses the asymmetry between up andhree differente, the beginning, middle, and end of the
down flow and is independent of the cell shape. For increasaexagon-square transition. With increasiag the curves
ing e the rising hot liquid occupies more and more of theshift towards smaller values of(n)n, while the slope
cell, while the area available for the down flow shrinks to changes nonmonotonically. In the range 2¢~<4.8 the
a_~ w6, wheresr equals the cell perimeter. slope increases from 6.5 to 8.5, then decreases almost to its

For any plane parallel to the bottom of a cell with crossstarting value at about=6.6. The slope is generally larger
sectiona, than the value of 5 typical for random networks like soap
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40

20 )
topological

+gas

<n>-a,,

FIG. 13. The constant coefficient of the Aboav-Weaire law, FIG. 14. The quotienty/u, Vs u,. The curve 14, results
(nYay+ u,, vs the linear coefficien{,n)—ay,,. The upper straight from the theoretical valuey,=1. The lower limit inay/u, for
line connects HS with a regular hexagonal network with one 5-7etworks with only threefold vertices is set by the topological gas
defect (HD). The lower straight line connects HS with a regular With ay/u,= —1/6. It separates the realms of negative and positive

square network with one 3-5 defe(@D). The arrows indicate in- correlation. The lower boundary is given by an extended HS pattern
creasinge. that gives the curve-5/u,. Arrows indicate increasing.

froth or epidermal tissugl5]. The maximum for the Beard ~ The data points belonging to smallstart at the upper line.
pattern is(n) —ay~8.5, close to the valug)—ay=10that ~ With increasinge they move down along the upper line,
we show below to be a general upper bound for networksliverging slowly. At abouts =4.8 the pattern jumps to the
that contain exclusively squares, pentagons, and heptagonfower line and then travels erratically along this line as indi-

A prototype of such a patterfenoted by HBconsists of cated by the arrows. Random networks like two-dimensional
many large homogeneous patches of hexagonal and squaseap froth have typical slopes @i)—ay~5. In Fig. 13 they
cells, separated by lines of pentagons. Assuming this pattefie just above the upper solid line.
is infinite and the number of cells in the patches is very large Figure 14 plots the quotierat,,/u, as a function ofu,,
in comparison to the number of pentagons, we hajd)n  allowing us to distinguish the Berd pattern from a wide
=16, m(5)n=26 [44], m(6)n=36. The dependence of range of naturally occurring patterfig5]. The data points
m(n)n on n is linear with a slope ofn)—ay=10. Since are confined by two lines. The cunay/u,=1/u, results
(n)=5, ay=—>5. Becauseu,=1, the constant coefficient from the theoretical valua,,= 1 [15] and gives an approxi-
in the Aboav-Weaire law has a value @f)ay+ n,=—24, mate upper bound. The networks comparef4i lie in its
the constant coefficier, of the linear fit for HS. Looking at  vicinity. A lower boundary is given by the extended HS pat-
the HS pattern we can understand the increase of the slope iarn, in which the ratio of pentagons to squares and hexagons
the transition region. In the nearly ordered hexagonalaries, resulting irmy= —5 but differentu,. Consequently,
(squarg pattern below(above the transition, squaréhex- the lower limiting curve is given by /u,=—5/u,.
agona) cells act as defects in the transition region. The two A network without any neighboring cell correlations, a
different ordered states coexist in a manner resembling th@pological gas, sets another lower limit af,/u, for net-
limiting case of HS. works with threefold vertices only withy, /w,= — 1/6 [46].

The patterns below and above the transition are clearlyn the absence of fourfold vertices the iged patterns stay
distinguished by their topological correlations. Figure 13above this gas line. Their topological correlations are com-
shows the calculated constant coefficiénjay+ u, of Eq.  parable to weakly disordered soap frdth6]. As soon as
(6) as a function of the slopé)—ay,. The data points are fourfold vertices appear, the patterns move below this limit-
bounded by two straight lines representing ideal transitiongng value. We call the regimes above and below the gas line,
from the hexagonalsquare pattern to the mediating HS ay/w,=—1/6, negative and positive correlation, respec-
pattern and therefore characterizing two different regimes fotively.
the neighboring cell correlations of the Bad pattern. The Positive correlation implies that cells of different topo-
upper line connects the HS pattern to a hexagonal patterogical class exist but all cells tend to cluster with cells of the
with a small number of 5-7 defectsiD). The HD pattern same topological class, as for the hexagonal and square cell
has a slopgn)—ay=5 and a constant coefficiedh)a,,  domains of STDBC. Positive correlation can only occur if
+u,=c,=6. The lower line connects the HS pattern to avertices with different coordination numbers are allowed.
square pattern with a small number of 3—5 defects called SDNegative correlation describes cells clustered with cells of
The slope is(n)—ayw=3 and the constant coefficient different topological class, which is typical for disordered
(nYaw+ u,=c.=4. Small numbers of defects mean that de-soap froth or grain boundaries. Ordered networks consisting
fects are completely embedded in the ordered hexagonalf cells of one topological class only do not fall into this
(square pattern and therefore do not neighbor each otherclassification.
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D. Finite size effects the planform change of STDBC. Indeed, the perimeter-area

ratio of a square Beard cell exceeds that of a hexagonal one

Ipy approximately 25%, nearly 20% higher than predicted.
The SGPN allows us to quantify the properties of pen-

tagonal cells in detail. The side length, perimeter, and cell

influence of finite size depends on the number of cells, on th%rea of pentagons lie between hexagons and squares. In the
number of cells at the boundary of the pattern, and on th ansition range from hexagons to squaresss<5.5 thé

number of vertices at the boundary where fewer than threg,oyic quantities of the pentagons change more rapidly than

sides meet. those of the other cell types. This behavior expresses the

Existing formulas[47] work for (»)=3 only. However,  cnameleon.like character of the pentagons, which behave
two alternatlve ways are based On.E(@'and(s)'Wh'Ch are ke hexagons if hexagons dominate and like squares if
strictly valid for infinite networks. Since both equations yield squares dominate.

an error of the same order, we restrict ourselves to(Eg. The Benard-Marangoni cells obey the generalized Aboav-
V\{h|0h allows us to calculate a theoreucal'avgrage .number C\';Veaire law, extending the range of validity of the law from
sides(n).. from (v). The average coordinatiofv) is N0t - 54om networks with threefold vertices to networks includ-
influenced by the finite size of our sample because the ing,g tqrfold vertices. We have proved the strict validity of
complete cells at the rim are excluded. The differen®®,  he |y for a model network that resembles the@rel pat-
between(n).. and the measureth) gives a quantitative es- g in the transition region. Topological correlation distin-
timate of finite size effects. The relative erfdn/(n).| is gy ishes among polygonal patterns. For positive topological
always below 2%. Thus, the influence of finite size effects oryoreation the cells cluster with cells of the same topological
the results is weak. class. While random patterns like disordered soap froth are
negatively correlated, the polygonal cells in STDBC are
IV. SUMMARY AND CONCLUSIONS positively correlated as soon as fourfold vertices appear.

We have analyzed the topological and metric properties of In comparison to other methods, the statlst|qs of polygo-
Bénard-Marangoni cells in the framework of stochastic ge_naI networks offer some advantages. The technique produces

ometry. This statistical approach based on the tabulation O§|mple statistics in phys!cal space, and can eaS|Iy. handle
Symmetry changes within a polygonal structure since it

neighborship relations, provides the distributions of all topo-{nakleS _noluse 0‘;.? spe;:n?r(]: refetr_ence.t:t calcul(;itter;s bOtht t_he
logical and metric variables of the cell network. opological quantities of the entire pattern an € metric

The topology of the Beard pattern is described by the properties of gach cell. . .
number of sides and the vertex coordination number distri- Our angly5|s s.u_ggests that the metric properties of a cell
butions. At the onset of the hexagon-square transition, botH1f|uence its stability at a given value of the control param-

guantities undergo drastic opposing changes. The avera%]er' A r:;:n:jencal chegk of ﬂ:'s afsutmdpttlonsv_rvglg(é bﬁ uaefulg
side number falls from six towards four and the vertex coor-' ¢ MeNod proposed IS not restricted to - It shou

dination number rises from three towards four. The secon pply to other polygonal systems in hydrodynamics like

moment of the side number distribution characterizes the d _aylelgh—Beﬂ:_;\rd convection with strongly temperature-
dependent viscosity48] or solutal Marangoni convection

gree of topological disorder in the pattern, its maximum cor-
relating with the maximum number of pentagons. [49].
The dependency or of the integral metric quantities,

average side length, cell perimeter, and cell area of the entire
pattern is qualitatively different, and cannot be deduced from We are grateful to H. Wendrock for sharing his image
any of these variables. With onset of the hexagon-squarprocessing routine, to D. Weise for help with programming,
transition, the average perimeter increases faster than the caihd to H. Kantz, N. Rivier, G. Schliecker, and A. Thess for
area suggesting that the ratio between both quantities affecisteresting discussions.

Are our statistics strongly influenced by finite size ef-
fects? Even stochastic networks with vertices of coordinatio
3 have average numbers of sidep<6 for few cells. The
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