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Stochastic geometry of polygonal networks: An alternative approach
to the hexagon-square transition in Be´nard convection
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Institute for Material Science, Dresden University of Technology, 01062 Dresden, Germany

Kerstin Eckert
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~Received 5 May 1997; revised manuscript received 3 June 1998!

We apply stochastic geometry to the transition from hexagonal to square cells recently observed in surface-
tension-driven Be´nard convection. In particular we study the metric and topological evolution of Be´nard
patterns as a function of the temperature difference,DT, across the layer. The preference of square Be´nard
cells at higherDT is a consequence of both a higher efficiency in heat transfer and more favorable metric
properties. Most notably, the perimeter-area ratio of a square cell exceeds that of a hexagonal cell by an
unexpectedly high value. From a topological point of view, the Be´nard pattern obeys the Aboav-Weaire law at
all times, even in the presence of threefold and fourfold vertices. The regimes above and below the transition
are characterized by different topological correlations between neighboring cells. With the appearance of
fourfold vertices, the topological correlation changes from negative to positive.@S1063-651X~98!14709-8#

PACS number~s!: 47.20.Dr, 47.54.1r, 02.50.2r, 64.60.Cn
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I. INTRODUCTION

Three-dimensional cellular structures based on tw
dimensional polygonal patterns are widespread in nature
biology, they appear, e.g., in corn cobs and epidermal tis
Many metallic materials are polycrystalline. Etching the
surfaces reveals the polygonal arrangement of the s
single crystals. In hydrodynamics polygonal structures ar
e.g., from surface-tension-driven Be´nard convection and
Rayleigh-Bénard convection in non-Boussinesq fluids.

To analyze such patterns we employ the stochastic ge
etry of polygonal networks~SGPN!. Historically, the first
polygonal structures investigated by SGPN were biolog
tissues@1–6#. Later research focused on clusters of me
grains, soap froth, and the similarity between their structu
and evolution@7–14#. For a detailed review of stochast
networks in different physical systems we refer to@15#.

While the application of SGPN to soap froth and po
crystals has been fruitful, we are aware of only one appli
tion to polygonal convective patterns@16#. However, these
methods are particularly suited to geometrical studies of
evolution of surface-tension-driven Be´nard ~STDBC! or
Bénard-Marangoni convection.

In the last decade STDBC has received considerable
tention. Since the first experiments of Be´nard @17# STDBC
has been associated with hexagonal patterns. While im
tant features of the moderately nonlinear regime, like
onset of convection@18,19#, wave number selection@20,21#,
and evolution of disorder@22# are well understood, the be
havior in the strongly nonlinear regime of STDBC has on
recently received a comprehensive analysis. References@23–
25# showed that beyond a certain distance above the thr
old of the primary instability, square convection cells rath
than the seemingly ubiquitous hexagons are persistent
dominant.

We reexamine the transition from hexagonal to squ
Bénard cells by means of SGPN, because none of the pr
PRE 581063-651X/98/58~3!/3458~11!/$15.00
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ous studies elucidated the control parameter dependenc
the metric and topological properties of the Be´nard cells.
Instead most quantified the wave number or the disord
Since the hexagon-square-transition resembles an or
disorder transition, we next review three existing approac
to quantify disorder.

The first approach@26,27,22# that introduces different
measures of disorder such as the radial and orientational
relation functions and special disorder functions, accou
for displacements and distortions of cells caused by def
in a hexagonal pattern. Since disorder is always measu
with respect to an ideal hexagonal pattern, an adequate
scription of the transition between convective states of d
ferent symmetry occurring at higher super-criticality is n
possible.

The second method calculates the minimal spanning
of the pattern, which is the shortest possible graph that c
nects all centers of mass of the convection cells. The bra
length histogram is unique for the arrangement of cell c
ters. The evolution of convection networks is characteriz
in terms of the normalized average branch length and
standard deviation of the branch length distribution@28#. The
information contained in both quantities is very restrict
and does not elucidate the topological structure of the n
work. Large cells are underrepresented because the min
spanning tree prefers to use small cells for its main branc

The third approach describes convection cells by me
of the crystallography in cylindrical symmetry@29,30#. The
main assumptions are weak disorder and the occurrenc
threefold vertices only. This approach cannot handle patte
characterized by vertices with coordination number four
for square Be´nard cells.

To summarize, the three approaches apply to the wea
nonlinear evolution of the hexagonal pattern, but not to
transition between patterns of different symmetry. This g
can be bridged by SGPN. Furthermore, SGPN allows
comparison between polygonal patterns in hydrodynam
3458 © 1998 The American Physical Society
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PRE 58 3459STOCHASTIC GEOMETRY OF POLYGONAL NETWORKS: . . .
and other networks such as, e.g., soap froths, epiderma
sue, or honeycombs. These patterns have a vertex coor
tion number of three. As long as STDBC occurs in hexa
nal cells with single defects the Be´nard pattern fulfills the
general topological relations derived for networks with thre
fold vertices@16#. We ask here whether these relations ap
also to STDBC patterns with appearance of square cells,
fourfold vertices.

The mathematics of stochastic two-dimensional netwo
is introduced in Sec. II A. Next we discuss STDBC includi
the recently observed hexagon-square transition. In Sec
we apply SGPN to the metric and topological changes
Bénard cells during this transition. We calculate the top
logical correlations between neighboring Be´nard cells and
discuss their differences from those of other naturally occ
ring networks~Sec. III C!. We find both positive and nega
tive correlations between the topologies of neighboring ce
Finite size effects are estimated in Sec. III D.

II. METHODS

A. Mathematical tools for two-dimensional patterns

A cellular pattern is a dense, space-filling arrangemen
n-sided polygons. The number of sides,n, of the individual
polygons varies. To analyze such cellular patterns we
stochastic geometry@31–33#, based on the statistical distr
butions of the network-variables both metric and topologi
~Table I!. Imagine a cellular pattern artificially deformed b
applying a force at one side. The metrics of the patt
change while the values of the topological quantities rem
the same. General relations exist between the mean valu
the corresponding distributions of the network-variables a
the intensive quantities of the network. The intensive qu
tities ~Table II! arev, k, ands, the densities of vertices, ce
sides, and cells, respectively. The most important parame
of the distributionsf are the mean value,

^ f &5
1

N (
i 51

N

f i ,

TABLE I. Metric and topological quantities used for the cha
acterization of cellular networks.

Quantity Symbol Type

Cell area a metric
Cell perimeter p metric
Side length l metric
Angle between two sides v metric
Vertex coordination number n topological
Side number n topological

TABLE II. Intensive network quantities.Nv , Nk , and Nc are
the numbers of vertices, cell sides, and cells, respectively, andA is
the area filled by the network.

Density Symbol Formula

Density of vertices v Nv /A
Density of sides k Nk /A
Density of cells s Nc /A
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and the second moment,

m2
f 5

1

N (
i 51

N

~ f i2^ f &!2.

f i is the value off for cell numberi. We call the mean values
and the intensive quantities the first order characteristics
the network. Normalized second moments are divided by
square of the mean value^ f &2.

The distributions of the quantities in Table I and the de
sities in Table II depend on each other but only a few dep
dencies are known. Exact relations for the mean values
the densities exist in the limit of infinite networks only. Th
most important are~for details and proofs see@33# and ref-
erences therein!:

^a&5
^n&
2k

5
1

s
, ~1!

v5
2k

^n&
, ~2!

which relate the average number of sides,^n&, and the den-
sity of sides,k, to the average cell area,^a& ~i.e., to the
density of cells,s! @Eq. ~1!#, and the density of vertices,v, to
the density of sides,k, and the average vertex coordinatio
number,^n& @Eq. ~2!#. Together with Euler’s relation,

v2k1s50, ~3!

they lead to

1

^n&
1

1

^n&
5

1

2
. ~4!

Equation~4! states that̂n& is exactly six for networks with
exclusively threefold vertices and less than six for netwo
that include vertices with a coordination of four or mor
Between the average cell perimeter^p& and the average sid
length ^ l & we have the relation

^p&5^ l &^n&. ~5!

Equations~1!–~5! reduce all first order information on the s
of densities and mean values to a triplet, containing one
the densities, one mean value of a topological variable (^n&
or ^n&), and a metric variable characterizing the boundary
the cells (̂ l & or ^p&).

A complete characterization of the structure also requ
higher moments of the distributions, whose relations are
known. We use the second moment of the distribution of
number of sidesm2

n , abbreviatedm2 , as a measure of disor
der of the network@15#.

Correlations among metric and topological quantities c
also be considered, e.g., the Aboav-Weaire law for the pu
topological correlation between the number of sides
neighboring cells. The relation was introduced for infin
networks with vertex coordination three (^n&56) and ex-
tended to^n&Þ6 to account for finite size effects@34–37#.
This law linearly relatesm(n)n andn:

m~n!n5~^n&2aW! n1^n&aW1m2 . ~6!
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3460 PRE 58UWE THIELE AND KERSTIN ECKERT
m(n) stands for the average number of sides of all neighb
ing cells to a cell withn sides averaged over alln-sided cells.
aW is an empirically determined parameter that quantifies
deviation of the slope from the average number of sides

Equation~6! holds for disordered patterns like biologic
cells and soap froth. In these casesaW is about 1.2, calcu-
lated from the data with a weighted least-squares fit. T
weights are chosen to be the probabilitiespn to find cells
with n sides.aW is then given by@34,35#

aW5@^n&^nm~n!&1m22^n2m~n!&#/m2 . ~7!

Equation~6! also naturally extends the Aboav-Weaire law
networks with nonthreefold vertices.

Phenomenologically the Aboav-Weaire law says that,
the usual casên&2aW'5, on the average one finds cel
with few sides beside cells with many sides and vice ver

The dependencies of the average cell area and perim
on the number of sidesn are linear for the area for biologica
cells ~Lewis’ law! and for the perimeter for polycrystal
~Feltham’s law!. Linearity is not clear for soap froth
@15,14,37#. Neither relation holds for Be´nard cells ~Sec.
III B 2 !.

B. The experiment

1. A brief introduction

The experiment consists of a liquid layer heated from
low by a horizontal plate of uniform temperature~cf. Fig. 1!.
The free surface of the liquid is in contact with air, cooled
the upper isothermal plate. The quiescent basic state o
liquid-air layers loses its stability to hexagonal cell conve
tion once the temperature difference,DT, between the lower
plate and interface exceeds a critical value,DTc . In liquid
layers with thickness of the order of 1 mm or less, surfa
tension dominates buoyancy. Thus, the essential ingred
for STDBC is the variation of surface tensions with tem-
peratureT, approximately,

FIG. 1. Schematic of the liquid-air Be´nard system: A tempera
ture difference,DT5DTl1DTg , is maintained across the two lay
ers by isothermal plates. The flow is mainly driven by the tempe
ture dependence of surface tension. The thicknesses of the l
and air layer aredl anddg , respectively.
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s5s02g~T2T0!, ~8!

where the temperature coefficient of the surface tensiog
52ds/dT is positive for the liquids we used. If a temper
ture fluctuation generates a hot spot at the free surface
surface tension decreases according to Eq.~8!. As a result,
liquid is pulled radially outward to regions of higher surfa
tension, causing further up-flow in the vicinity of the spo
For sufficientDT the rising hot liquid reinforces the tem
perature disturbance, causing the primary instability.

2. Setup and parameters

Figure 2 shows the apparatus. The container bottom
polished silicon crystal wafer, 12.5 cm in diameter, on
5 cm thick copper block with a diameter of 17.5 cm. A
aluminum disk of the same diameter containing 4.0 m o
thermo-coax cable~Philips! is pressed from below agains
the copper block. To minimize lateral heat losses the cop
block is placed in a vacuum, and, the outer parts of
chamber are thermally insulated. The liquid layer is confin
by an inner plexiglass ring of radiusr 545.2 mm. A menis-
cus at the inner ring is avoided by filling it to its total heigh
The space between this ring and a second ring of larger
ameter is filled with the same liquid to minimize lateral tem
perature gradients. We use a 10 cS silicone oil~NM 10, Hüls
AG! with a Prandtl number Pr5100 atT525 °C. Its prop-
erties are summarized in Table III.

The liquid thicknessdl is 1.41 mm for an aspect ratioG
52r /dl564. The liquid layer is closed from above by
transparent sapphire disk, 12.0 cm in diameter with a thi
nessds52.99 mm, placed on a third, outer ring. The a
layer, formed by the difference in height between inner a
outer ring, has a thicknessdg50.26 mm.

A special cooling device@38# supplies water with a flow
rate of 95 l/h at 18.060.01 °C to the center of the sapphir
disk where it flows radially outwards, ensuring axisymmet
cooling. The temperatures of the silicon crystalTb , and of
the sapphire window,Tw , are measured with encapsulate

-
id FIG. 2. Schematic section through the experimental appara
rature

TABLE III. Properties of the silicone oil NM 10~Hüls AG! at 25 °C. n, r, k, l, a, andg denote

viscosity, density, thermal diffusivity, heat conductivity, thermal expansion coefficient, and tempe
coefficient of surface tension.

n (1024 m2/s) r (kg/m3) k (1024 m2/s) l l (W/m K) a (K21) g (N/mK)

0.10 940.0 0.00103 0.134 0.0011 5.9 1025
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PRE 58 3461STOCHASTIC GEOMETRY OF POLYGONAL NETWORKS: . . .
quartz crystals. They have a diameter of 1.8 mm and sho
highly linear dependence of the resonance frequency on
perature. Tb is controlled with a feedback loop
(60.005 K) and increased automatically in a quasista
manner at a rate of 0.08 K/h. Before visualization,Tb is held
constant for one horizontal relaxation time,th5r 2/k, ap-
proximately 5 h.k denotes the thermal diffusivity.

The dimensionless control parameter«, measuring the
distance above the threshold of primary instability, is defin
as

«5
DTcd2DTc

DTc
, ~9!

whereDTcd is the temperature difference in the conducti
regime given by

DTcd5
Tb2Tw

11~l l /dl !~dg /lg1ds /ls!
. ~10!

l l , lg , andls are the heat conductivities of liquid, air, an
sapphire, respectively. For more details we refer to@25#.

3. Image processing

We used standard shadowgraph techniques to visua
the convective pattern@39#, thresholded into binary pictures
using a QUANTIMET 570 image processing and analy
program ~Leica!. Thresholding retains the light appearin
cell knots~vertices! and edges~sides!, which correspond to
the down-flow of cold liquid.

The binary pictures are corrected manually before the
ordinates of the vertices of every cell and pointers to
neighboring cells are extracted. From this information
calculate the metric and topological quantities only for bu
cells ~180 to 250! to avoid perturbing effects introduced b
peripheral cells. The quantities include side length, num
of sides, cell area, cell perimeter, and angles between
sides~in the following ‘‘side angle’’! for all cells. To com-
pute the cell area ann-sided polygon is approximated byn
22 triangles.

The digitizing routines split fourfold vertices into tw
closely spaced threefold vertices and a short side betw
them. To eliminate spurious sides, vertices separated by
than a defined cutoff length are merged iteratively and in
actively to preserve the topology of the network. We det
mine the cutoff length from the side length distribution f
each image. The uncorrected distributions have an unph
cal minimum at side lengths comparable to the typical dia
eter of the vertices that can be identified within an error o
pixel. To estimate the error caused by edge eliminati
some patterns were corrected with the derived cutoff6 1
pixel. The resulting small error together with the finite res
lution of the digital images gives the error bars in the plo

III. RESULTS

Before analyzing metrics and topology of the STDBC p
tern in detail we first wish to demonstrate qualitatively t
changes in the cellular composition~Fig. 3!. Increasing the
control parameter« in a quasistatic manner, a pattern
well-ordered hexagonal cells appears at«50 @18,19,25#.
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This pattern can be preserved to higher« under low noise
conditions. Figure 3~a! shows an example for«52.2. More
typical, however, is the presence of certain types of defe
for this « range@Fig. 3~b!#. These defects mainly cluster int
penta-hepta pairs and different kinds of flower defects@40#.
Generally, the penta-hepta defect~see Sec. III A! has the
highest topological stability. Beyond«p51.560.5, depend-
ing on the layer thicknessdl , the number of pentagonal cell
rises as a consequence of a systematic modification occu
in the defect structure@41#. As a result, pentalines of growin
order, i.e., increasing numbers of pentagonal cells,
formed @Figs. 3~c! and 3~e!#. Above «s54.260.3 square
convection cells appear. With increasing« the squares con
tinuously replace the hexagons. An advanced stage of
process is shown in Fig. 3~d!. While at the highest«
achieved in the experiments, a small number of hexag
persist between the square cell domains for large aspec
tios, a nearly pure square pattern is obtained for smaller
pect ratios@Fig. 3~e!#. The basic properties of the squa
Bénard cells have been studied in@25#: The square cells
more efficiently transport heat, whereby their wave num
exceeds that of hexagonal cells. While the selection of he
gons at the onset of convection can be intuitively underst
on the basis of symmetry arguments, the selection of squ
is not so obvious. In Sec. III B 3 we demonstrate that th
metric properties, as well as their higher transport efficien
are another reason for the greater efficiency of square cel
strongly nonlinear STDBC.

FIG. 3. Changes of the cellular pattern of STDBC with increa
ing control parameter« ~shadowgraph images! for large aspect ratio
(G564): ~a! hexagonal cells («52.2), ~b! defects in the hexagona
pattern («52.4), ~c! intermediate stage («54.0), ~d! square cells
(«56.1), and for medium aspect ratio (G542): ~e! intermediate
stage («54.0), ~f! square cells («55.3). The parameter are P
5100, dl51.41 mm, dg50.26 mm for ~a!–~d! and Pr5100, dl

51.56 mm, dg50.46 mm for~e!–~f!.
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A. Topological properties of Bénard cells

The side number distribution gives direct access to
fraction, pn , of polygonal cells withn sides. Thepn of the
main cell types~hexagons, pentagons, and squares! are plot-
ted in Figs. 4~a! and 4~b!. The mean values of the distribu
tions, namely, the average number of sides,^n&, and the
average vertex coordination number,^n&, are shown in Figs.
4~c! and 4~d!.

With the onset of the primary instability («50) the liquid
layer is tessellated by well-ordered hexagonal cells,p7
;0.01, p6;0.98, p5;0.01, p450. The average numbe
of sides,̂ n&, is six and the average vertex coordination nu
ber, ^n&, is three. The deviation ofp6 from unity is due to a
few pentagonal and heptagonal cells, which pair in pen
hepta defects. Beyond«p the number of pentagons that a
not bound in penta-hepta defects starts to increase, v
mechanism studied in detail in@41#. The process is initiated
by a generic transformation of the penta-hepta defect oc
ring at higher«, sketched in Fig. 5~a!. During this transfor-
mation a cell side between the heptagon and one of the h
gons shrinks to vanishing. Consequently, two pentagons
two ~nonregular! hexagons appear with a fourfold vertex
the center. Although this5-5-6-6 clusteris a topologically
stable defect in the larger« range, it remains only an inter
mediate step towards larger compounds of pentagons,
pentalines. Again, a side of one of the hexagons shrinks
vanishing, and the prototype of the pentaline, compris
four pentagonal cells, appears. The vanishing of cell si
continues and pentalines of growing order, i.e., increas
numbers of pentagons, form@cf. Fig. 5~b!, left#.

The rise inp5 accompanies a decrease in^n& to 5.5 and
an increase in̂ n& from three to 3.1. Above«s54.260.3,
square cells appear within the pentalines@Fig. 5~b!, right#. A

FIG. 4. Evolution of topological quantities with control param
eter«. ~a! Probability of hexagonal and square cells,~b! probability
of pentagonal cells,~c! average number of sides,~d! average coor-
dination number of vertices.
e
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crossover in the topological properties of the pattern sets
In the range«s<«<5.5, ^n& changes from 5.5 to 4.5 while
^n& increases from 3.1 to 3.6. The final state in the expe
ment, at«58.0 has square convection cells, forming d
mains of different orientation and extension. The deviat
of ^n& and ^n& from four is due to a few hexagons an
pentagons that persist with remarkable stability between
square domains, because of the circular geometry of the
tainer and of the rather high Prandtl number of the liqu
@25#.

m2 measures pattern disorder@12,13#, and can describe
the transition between two ordered states via a disorde
intermediate state. Unlike the defect density@26,27#, m2

measures deviations from the average value of the entire
tern instead of deviations from the ideal hexagonal latti
treating hexagonal and square cells equally. The evolutio
m2 with « is shown in Fig. 6. In the purely hexagonal regim
its value is close to zero. With the rise of the number
pentagons it increases to reach a maximum at«54.5, then
decreases to aroundm2'0.4 at higher«. The value ofm2
.0 at large« results from the persisting pentagons a
hexagons. Comparing the behavior ofm2 with the shape of
pn , ^n& and^n& in Fig. 4, we observe that them2 maximum
occurs for the state with maximump5 and separates th
states dominated either by hexagons or squares. This co
mity is not trivial becausem25(n(n2^n&)2pn5p5@1
14(p4 /p5)#2p5

2@114(p4 /p5)14(p4 /p5)2# ~with p651
2p42p5 and ^n&5(nnpn5622p42p5). The dependence
of m2 on the ratiop4 /p5 and therefore on the size and sha
of the different patches requires either extremalp4 /p5 or
p65p4 in order to find simultaneous maxima ofm2 and p5
@42#. The state with maximalp5 is also the state with the
maximal number of different patches—the best mixed sta

FIG. 5. ~a! Transformation of a penta-hepta defect~left! into the
5-5-6-6 cluster~right! having a fourfold vertex at the center.~b!
Transformation of a pentaline~left! into a patch of square cells with
pentagonal edges~right!. Schematic after shadowgraph images. T
arrows in~a! and ~b! indicate vanishing sides.
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PRE 58 3463STOCHASTIC GEOMETRY OF POLYGONAL NETWORKS: . . .
Furthermore, the appearance of the square cells within
pentalines suggests that the pentagons are not a by-pro
of the finite geometry but a necessary precondition for
onset of the transition. As discussed in@41# the pentalines
introduce a significant curvature in the three elementary
systems composing the hexagonal pattern. This curvature
source of the mean flow, also supporting further merging
the cell knots. Thus, the pentagons mediate between the
ordered states. In addition, they introduce significant disor
into the pattern, which is well characterized bym2 .

B. Metric properties of Bénard cells

1. The metrics of the entire Be´nard pattern

Before we look at particular cell classes we first wish
study the entire pattern as a function of«. According to
Table I, we plot in Fig. 7 the average side angle, side len
area, and perimeter. The side angle measures symm
changes. It is 120 ° in the purely hexagonal regime fo«
,1 and tends to 90° beyond«55.5 where squares domina
~actually'97 ° because of defects!.

The average side length increases slowly with« both in
the hexagon-pentagon regime, 0<«<«s , and in the square
dominated regime above«55.5, due to an increase of wav
number@21,20#. Between these ranges, i.e., with the onse
the hexagon-square transition,^ l & increases by 35%. This
increase is much less pronounced in the average perim
^p& and not identifiable in̂ a&. The behavior of̂ p& is a
consequence of the contrary behaviors of^ l & and ^n& ~cf.
Fig. 4!, which are related tôp& via Eq. ~5!. Both ^p& and
^a& have their slope with« reduced for«>3 by the growing
number of pentagons.

The difference of the dependence of the integral quanti
^ l &, ^p&, and ^a& on « suggests that the ratio between p
rimeter^p& and areâ a& affects pattern evolution. In Fig. 8
we plot ^p& versus^a& with « as a parameter. Since bo
^p& and^a& grow monotonically with«, points located nea
the origin have lower«. With the onset of the hexagon
square transition at«5«s the points deviate more and mo

FIG. 6. Second moment of the number of sides distribution,m2 ,
as a function of«. The maximum ofm2 coincides with the maxi-
mum fraction of pentagons.
he
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from the dotted line. Thus, in this regime,^p& increases
more rapidly than for«,«s . To understand this behavior w
study next the behaviors of particular cell classes.

2. The properties of hexagonal, square,
and pentagonal Be´nard cells

Unlike Fourier space analysis, SGPN allows us to obta
complete set of averaged metric quantities for all three
types, including cell area and perimeter. Furthermore, SG
can provide all minimal spanning tree results, with t

FIG. 7. The metric properties of Be´nard cells as a function of«.
~a! Average side anglêv&, ~b! average side lengtĥl &, ~c! average
cell area^a&, and~d! average cell perimeter̂p&.

FIG. 8. Average cell perimeter^p& vs average cell area,^a&. «
increases monotonically from left to right. The dotted line is a gu
line. All points deviating clearly from this line have«>«s .
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branch length distribution and its second moment repla
by the normalized side length distribution and its seco
moment.

Figure 9 plots the average side length for each cell cla
Comparing the values of̂l n& we find that the square~hex-
agonal! cells have the highest~lowest! side lengths while
pentagons are intermediate. In the transition range,«s<«
<5.5, the pentagon side length^ l 5& displays a peculiar be
havior. While ^ l 6& changes in this range by about 5%,^ l 5&
increases by 10%. Thus, the pentagons behave like hexa
~squares! if most cells are hexagonal~square!. Knowing the
behavior of̂ l n& allows us to understand the evolution of th
integral quantitŷ l & @cf. Fig. 7~b!#. The drastic change star
ing at «5«s is caused by the crossover from the hexag
line, ^ l 6&, to the square line,̂l 4&, due to the stability loss o
the hexagons. It is further supported by the behavior of
pentagons mediating between both cell classes. In Table
we compare the fitŝan& versus^ l n& with the relations ex-
pected for strictly regular cells. The deviation of the prefa
tors from regularity is 0.4% for squares, 2.7 % for pentago
and 1.9% for hexagons. The irregularity changes the r
tions between side length and wave number for regular p
gons:

k65
4p

3l 6
, k45

2p

l 4
. ~11!

Therefore, the translation of the wave number measure
Fourier space into side length of the cells via Eq.~11! is only
approximate.

FIG. 9. Dependence of the average side length on« for the three
cell classes. The dotted lines are guide lines.
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Another consequence of the qualitatively different beh
ior of the^ l n& ~and therefore of thêpn&) is that^pn& cannot
depend linearly on the side numbern ~Feltham’s law!. The
same argument applies for the linear dependency of the
erage cell areâan& on n ~Lewis’ law!. However, the laws
might hold in a subrange of the control parameter. Refere
@16# validated Lewis’ law for«52.5. Our analysis shows
that in the weakly nonlinear range both Lewis’ and Fel
am’s law apply reasonably well. As for soap froth@14#, the
statistical error is slightly less for Feltham’s than for Lewi
law.

3. The perimeter-area-ratio criterion

Next we study thê p&/^a& ratios both of the entire pat
tern and of the particular cell classes~Fig. 10!. We see that
these quantities decrease with increasing«, which is due to a
global increase of the cell sizes@25#. The ^p&/^a& ratio of
the entire Be´nard pattern moves through the space boun
by the hexagon and the square lines. For«,2.5 where hexa-
gons are dominant, the ratio follows the hexagon line. In
transition range, extending from 3.0<«<6.0 the ratio in-
creasingly deviates from the hexagon line, intersecting
line of pentagons. Above«56.0 the^p&/^a& ratio follows
the square line. Figure 10 suggests that the stability los
hexagons results to a part from an unfavorable perime
area ratio in comparison to square cells. Indeed, we find
^p4&/^a4& drastically exceeds the values expected on the
sis of the following two arguments. Generally, the relatio

^p4&/^a4&

^p6&/^a6&
5A3

^ l 6&

^ l 4&
~12!

FIG. 10. The ratiô p&/^a& between average perimeter and a
erage area vs the control parameter,«, for the entire pattern and the
three cell types.
TABLE IV. The relation between average side length,^ l n&, and average cell area,^an&, for the three cell
classes.

Planform
Theoretical relation for
the regular planform

Relation as determined
from experiment

Hexagonal cell a65
3
2A3l 6

252.598l 6
2 ^a6&52.550̂ l 6&

2

Pentagonal cell a55
1
4
A25110A5l 5

251.720l 5
2 ^a5&51.673̂ l 5&

2

Square cell a45 l 4
2 ^a4&50.996̂ l 4&

2
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holds for regular planforms~cf. Table IV!, i.e., the ratio of
the ^pn&/^an& is inversely proportional to the ratio of th
side lengths. Â p4&/^a4& larger than̂ p6&/^a6& requires

^ l 4&<A3 ^ l 6&. ~13!

To estimate^ l 4& we consider first the real transition a
sketched schematically in Fig. 11. The largest side lengths,
of the pentagon gives an upper bound for^ l 4& as, s5 l 4

max

52l6 sinp/35A3 l 6 . From this argument we obtai
^p4&/^a4&5^p6&/^a6&. We next consider an ideal transitio
that proceeds directly from hexagons to squares. The con

vation of the cell area requiresl 45AA3/2A3 l 6 , implying

(^p4&/^a4&)/(^p6&/^a6&)5A2/A3'1.07. In the experi-
ment, however, we find̂l 4&5(0.8060.03)A3 ^ l 6& leading
to

^p4&/^a4&

^p6&/^a6&
5~1.2660.05!. ~14!

The difference between the observed~1.26! and the maxi-
mum expected~1.07! values is also qualitative. Assumin
Eq. ~11! for regular polygons, i.e.,k4 /k653l 6/2l 4 , the two
considerations above imply a wave number ratio betwee

0.87,
k4

k6
,0.93. ~15!

The upper~lower! value is valid for argument one~two!. The
wave number of squares should be at least 7% smaller
that of hexagonal cells. The wave number ratio observe
the experiment, however, islarger than unity by nearly 7%,
in accordance with results obtained independently by Fou
space analysis@25#.

To see why the higher perimeter-area ratio favors squ
cells at larger« we briefly recall the main feature of strong
nonlinear STDBC@43#. For increasing« the Peclet numbe
Pe rises while the Reynolds number remains below un
Due to the high Peclet number the isotherms are stron
deformed even at moderate«. The nonlinear redistribution
of the temperature gradients leads to the formation of th
mal boundary layers of thicknessd between adjacent cells
This scale separation into a macro scale,k21, and a micro
scale,d;(kPe)21, expresses the asymmetry between up a
down flow and is independent of the cell shape. For incre
ing « the rising hot liquid occupies more and more of t
cell, while the area available for the down flow shrinks
a2;pd, wherep equals the cell perimeter.

For any plane parallel to the bottom of a cell with cro
sectiona,

FIG. 11. Schematic of the derivation of an upper bound for
side length of a square cell,l 4 , as a function of the side lengthl 6 of
the hexagonal cell.
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vz~x,y,z5const! dx dy50,

requiringvz
1a1'vz

2a2 with a5a21a1 where ‘‘1’’ refers
to up flow. Sincea2!a1 it follows that a1'a. Given an
average upward velocity,vz

1 , the downward velocity is
higher for smaller areas of down flow and becomes roug
proportional to (p/a)21. Thus, the square cells convert th
thermocapillary energy more efficiently at higher«, since
the viscous dissipation associated with the vertical motion
obviously smaller.

C. The relation between topological quantities

Until now we have analyzed the metric and topologic
quantities of single cells averaged over the ensemble. N
we focus on correlations between the topological proper
of neighboring cells. Especially, we check the generaliz
Aboav-Weaire-law@Eq. ~6!#, calculating the Aboav param
eteraW from the experimental data via the weighted linear
m(n)n5cln1cc . Comparing with Eq.~6! we obtain aW
5^n&2cl . The validity of the law in our case requirescc
5^n&aW1m2 , and the mean deviation is less then 2%. Th
our data support the applicability of the Aboav-Weaire la
to patterns with threefoldand fourfold vertices. This fact is
surprising, since the Be´nard pattern differs significantly from
the usually studied random networks, with cells prefere
tially clustering with cells of the same topological class. Th
circumstance distinguishes the Be´nard pattern from stochas
tical networks like soap froth.

In Fig. 12 we show the dependence ofm(n)n on n for
three different«, the beginning, middle, and end of th
hexagon-square transition. With increasing«, the curves
shift towards smaller values ofm(n)n, while the slope
changes nonmonotonically. In the range 2.7<«<4.8 the
slope increases from 6.5 to 8.5, then decreases almost t
starting value at about«56.6. The slope is generally large
than the value of 5 typical for random networks like so

e

FIG. 12. The dependence ofm(n)n on n ~Aboav-Weaire law!.
The lines represent the linear relation Eq.~6! with aW calculated by
a least squares fit. We show one mainly hexagonal network«
52.4), a network from the transition region («54.7) and a net-
work with mainly square cells («57.1).
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froth or epidermal tissue@15#. The maximum for the Be´nard
pattern iŝ n&2aW'8.5, close to the valuên&2aW510 that
we show below to be a general upper bound for netwo
that contain exclusively squares, pentagons, and heptag

A prototype of such a pattern~denoted by HS! consists of
many large homogeneous patches of hexagonal and sq
cells, separated by lines of pentagons. Assuming this pa
is infinite and the number of cells in the patches is very la
in comparison to the number of pentagons, we havem(4)n
516, m(5)n526 @44#, m(6)n536. The dependence o
m(n)n on n is linear with a slope of̂ n&2aW510. Since
^n&55, aW525. Becausem251, the constant coefficien
in the Aboav-Weaire law has a value of^n&aW1m25224,
the constant coefficientcc of the linear fit for HS. Looking at
the HS pattern we can understand the increase of the slo
the transition region. In the nearly ordered hexago
~square! pattern below~above! the transition, square~hex-
agonal! cells act as defects in the transition region. The t
different ordered states coexist in a manner resembling
limiting case of HS.

The patterns below and above the transition are cle
distinguished by their topological correlations. Figure
shows the calculated constant coefficient^n&aW1m2 of Eq.
~6! as a function of the slopên&2aW . The data points are
bounded by two straight lines representing ideal transiti
from the hexagonal~square! pattern to the mediating HS
pattern and therefore characterizing two different regimes
the neighboring cell correlations of the Be´nard pattern. The
upper line connects the HS pattern to a hexagonal pat
with a small number of 5–7 defects~HD!. The HD pattern
has a slopê n&2aW55 and a constant coefficient^n&aW
1m25cc56. The lower line connects the HS pattern to
square pattern with a small number of 3–5 defects called
The slope is ^n&2aW53 and the constant coefficien
^n&aW1m25cc54. Small numbers of defects mean that d
fects are completely embedded in the ordered hexag
~square! pattern and therefore do not neighbor each oth

FIG. 13. The constant coefficient of the Aboav-Weaire la
^n&aW1m2 , vs the linear coefficient,̂n&2aW . The upper straight
line connects HS with a regular hexagonal network with one
defect ~HD!. The lower straight line connects HS with a regul
square network with one 3-5 defect~SD!. The arrows indicate in-
creasing«.
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The data points belonging to small« start at the upper line
With increasing« they move down along the upper line
diverging slowly. At about«54.8 the pattern jumps to the
lower line and then travels erratically along this line as in
cated by the arrows. Random networks like two-dimensio
soap froth have typical slopes of^n&2aW'5. In Fig. 13 they
lie just above the upper solid line.

Figure 14 plots the quotientaW /m2 as a function ofm2 ,
allowing us to distinguish the Be´nard pattern from a wide
range of naturally occurring patterns@45#. The data points
are confined by two lines. The curveaW /m251/m2 results
from the theoretical valueaW51 @15# and gives an approxi-
mate upper bound. The networks compared in@45# lie in its
vicinity. A lower boundary is given by the extended HS pa
tern, in which the ratio of pentagons to squares and hexag
varies, resulting inaW525 but differentm2 . Consequently,
the lower limiting curve is given byaW /m2525/m2 .

A network without any neighboring cell correlations,
topological gas, sets another lower limit ofaW /m2 for net-
works with threefold vertices only withaW /m2521/6 @46#.
In the absence of fourfold vertices the Be´nard patterns stay
above this gas line. Their topological correlations are co
parable to weakly disordered soap froth@16#. As soon as
fourfold vertices appear, the patterns move below this lim
ing value. We call the regimes above and below the gas l
aW /m2521/6, negative and positive correlation, respe
tively.

Positive correlation implies that cells of different top
logical class exist but all cells tend to cluster with cells of t
same topological class, as for the hexagonal and square
domains of STDBC. Positive correlation can only occur
vertices with different coordination numbers are allowe
Negative correlation describes cells clustered with cells
different topological class, which is typical for disordere
soap froth or grain boundaries. Ordered networks consis
of cells of one topological class only do not fall into th
classification.

,

7

FIG. 14. The quotientaW /m2 vs m2 . The curve 1/m2 results
from the theoretical valueaW51. The lower limit in aW /m2 for
networks with only threefold vertices is set by the topological g
with aW /m2521/6. It separates the realms of negative and posit
correlation. The lower boundary is given by an extended HS pat
that gives the curve25/m2 . Arrows indicate increasing«.
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D. Finite size effects

Are our statistics strongly influenced by finite size e
fects? Even stochastic networks with vertices of coordina
3 have average numbers of sides^n&<6 for few cells. The
influence of finite size depends on the number of cells, on
number of cells at the boundary of the pattern, and on
number of vertices at the boundary where fewer than th
sides meet.

Existing formulas@47# work for ^n&53 only. However,
two alternative ways are based on Eqs.~3! and~5!, which are
strictly valid for infinite networks. Since both equations yie
an error of the same order, we restrict ourselves to Eq.~3!,
which allows us to calculate a theoretical average numbe
sides^n&` from ^n&. The average coordination̂n& is not
influenced by the finite size of our sample because the
complete cells at the rim are excluded. The difference,Dn,
between̂ n&` and the measured̂n& gives a quantitative es
timate of finite size effects. The relative erroruDn/^n&`u is
always below 2%. Thus, the influence of finite size effects
the results is weak.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the topological and metric propertie
Bénard-Marangoni cells in the framework of stochastic g
ometry. This statistical approach based on the tabulatio
the coordinates of the vertices of all cells, as well as of all
neighborship relations, provides the distributions of all top
logical and metric variables of the cell network.

The topology of the Be´nard pattern is described by th
number of sides and the vertex coordination number dis
butions. At the onset of the hexagon-square transition, b
quantities undergo drastic opposing changes. The ave
side number falls from six towards four and the vertex co
dination number rises from three towards four. The sec
moment of the side number distribution characterizes the
gree of topological disorder in the pattern, its maximum c
relating with the maximum number of pentagons.

The dependency on« of the integral metric quantities
average side length, cell perimeter, and cell area of the e
pattern is qualitatively different, and cannot be deduced fr
any of these variables. With onset of the hexagon-squ
transition, the average perimeter increases faster than the
area suggesting that the ratio between both quantities af
e
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the planform change of STDBC. Indeed, the perimeter-a
ratio of a square Be´nard cell exceeds that of a hexagonal o
by approximately 25%, nearly 20% higher than predicted

The SGPN allows us to quantify the properties of pe
tagonal cells in detail. The side length, perimeter, and c
area of pentagons lie between hexagons and squares. I
transition range from hexagons to squares,«s<«<5.5, the
metric quantities of the pentagons change more rapidly t
those of the other cell types. This behavior expresses
chameleon-like character of the pentagons, which beh
like hexagons if hexagons dominate and like squares
squares dominate.

The Bénard-Marangoni cells obey the generalized Aboa
Weaire law, extending the range of validity of the law fro
random networks with threefold vertices to networks inclu
ing fourfold vertices. We have proved the strict validity
the law for a model network that resembles the Be´nard pat-
tern in the transition region. Topological correlation disti
guishes among polygonal patterns. For positive topolog
correlation the cells cluster with cells of the same topologi
class. While random patterns like disordered soap froth
negatively correlated, the polygonal cells in STDBC a
positively correlated as soon as fourfold vertices appear.

In comparison to other methods, the statistics of polyg
nal networks offer some advantages. The technique prod
simple statistics in physical space, and can easily han
symmetry changes within a polygonal structure since
makes no use of a specific reference. It calculates both
topological quantities of the entire pattern and the me
properties of each cell.

Our analysis suggests that the metric properties of a
influence its stability at a given value of the control para
eter. A numerical check of this assumption would be use
The method proposed is not restricted to STDBC. It sho
apply to other polygonal systems in hydrodynamics li
Rayleigh-Bénard convection with strongly temperatur
dependent viscosity@48# or solutal Marangoni convection
@49#.
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